设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有: A. f'(x)>0...

作者: tihaiku 人气: - 评论: 0
问题 设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有: A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0 C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0
选项
答案 B
解析 提示:已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。

猜你喜欢

发表评论
更多 网友评论0 条评论)
暂无评论

Copyright © 2012-2014 题库网 Inc. 保留所有权利。 Powered by tikuer.com

页面耗时0.0870秒, 内存占用1.04 MB, Cache:redis,访问数据库19次