设A是三阶矩阵,a1(1,0,1)T,a2(1,1,0)T是A的属于特征值1的特征向量,a3(0,1,2)T是A的属于特征值-1的特征向量,则: A.a...

作者: tihaiku 人气: - 评论: 0
问题 设A是三阶矩阵,a1(1,0,1)T,a2(1,1,0)T是A的属于特征值1的特征向量,a3(0,1,2)T是A的属于特征值-1的特征向量,则: A.a1-a2是A的属于特征值1的特征向量 B.a1-a3是A的属于特征值1的特征向量 C.a1-a3是A的属于特征值2的特征向量 D. a1+a2+a3是A的属于特征值1的特征向量
选项
答案 A
解析 提示:已知a1,a2是矩阵A属于特征值1的特征向量,即有Aa1=1*a1,Aa2=1*a2成立,则A(a1-a2)=1*(a1-a2),a1-a2为非零向量,因此a1-a2是A属于特征值1的特征向量。

猜你喜欢

发表评论
更多 网友评论0 条评论)
暂无评论

Copyright © 2012-2014 题库网 Inc. 保留所有权利。 Powered by tikuer.com

页面耗时0.0507秒, 内存占用1.04 MB, Cache:redis,访问数据库20次